Representation Theory: Making abstract algebra more concrete

Erich C. Jauch, Ph.D.
University of Wisconsin-Eau Claire

March 16th, 2023
(1) Representation Theory

- What is representation theory?
- Examples
(2) Standard flag orders
- Definitions
- Examples
- Why?
(3) What do I do?

What is representation theory?

- Consider the following matrix:

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- How would we study/understand it?
- How about how it acts on the vector spaces \mathbb{R}^{4} or \mathbb{C}^{4} :

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
x_{2} \\
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

- Something we see in abstract algebra is S_{n}, the symmetric group on n elements, which is made up of permutations acting the set $\{1,2,3, \ldots, n\}$.

Example 1

Consider $(12) \in S_{4}$. It switches the position of 1 and 2 in the set, that is,

$$
(12) .\{1,2,3,4\} \rightarrow\{2,1,3,4\}
$$

- How we study this is built into its definition. Understanding how it acts on a set.
- This is a theme of representation theory. Understanding an object by how it acts on something else.
- In particular, we take objects from (very) abstract algebra and relate them to linear algebra.
- Things like:
- The symmetric group [Jam84],
- Lie algebras [Hum78], and
- Galois and flag orders [FO10; Har20; Web19; Jau21; Jau22]

Example - Symmetric group

Example 2

We can take $S_{4} \rightarrow\{4 \times 4$ Permutation Matrices $\}$ for example we have

$$
(12) \mapsto\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

This allows S_{4} to act on \mathbb{C}^{4}. Where it takes

$$
(12) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T} \rightarrow\left(x_{2}, x_{1}, x_{3}, x_{4}\right)^{T}
$$

Example - Lie algebras

Example 3

- We call $G L_{n}(\mathbb{C})$ the the general linear group of $n \times n$ matrices (over \mathbb{C}) which is the collection of every invertible $n \times n$ matrix.
- To understand that we actually relate it to $\mathfrak{g l}_{n}(\mathbb{C})$ the general linear algebra of $n \times n$ matrices (over \mathbb{C}) which is the collection of EVERY $n \times n$ matrix.
- To understand THAT we relate it to $U\left(\mathfrak{g l}_{n}\right)$ the universal enveloping algebra of $\mathfrak{g l}_{n}(\mathbb{C})$ which is complicated...

Smash product

- We need two things to build the algebras I care about.
- Λ - a Noetherian integrally closed domain (and $\operatorname{Frac}(\Lambda)$ its field of fractions)
- \hat{W} - a subgroup of $\operatorname{Aut}(\Lambda)$

Definition 4

The smash product $\operatorname{Frac}(\Lambda) \# \hat{W}$ is the collection of formal sums:

$$
X=\sum_{w \in \hat{W}} f_{w} w
$$

where $f_{w} \in \operatorname{Frac}(\Lambda)$ is non-zero for finitely many f_{w}.

- We add terms together component-wise.
- Multiplication is more interesting:

$$
f_{1} w_{1} \cdot f_{2} w_{2}=\left(f_{1} w_{1}\left(f_{2}\right)\right)\left(w_{1} w_{2}\right)
$$

Example

- Let's look at something concrete to hold onto.

Example 5

Let $\Lambda=\mathbb{C}\left[x_{1}, x_{2}\right]$, complex polynomials in two variables, and $\hat{W}=S_{2}$, the permutation group. Then

$$
\mathbb{C}\left(x_{1}, x_{2}\right) \# S_{2}=\left\{\sum_{\sigma \in S_{2}} f_{\sigma} \sigma \mid f_{\sigma} \text { a rational function }\right\} .
$$

Let's compute $\left(x_{1}-x_{2}\right)(12) \cdot\left(x_{1}-x_{2}\right)$

$$
\begin{aligned}
\left(x_{1}-x_{2}\right)(12) \cdot\left(x_{1}-x_{2}\right) & =\left(x_{1}-x_{2}\right)(12)\left(\left(x_{1}-x_{2}\right)\right)(12) \\
& =\left(x_{1}-x_{2}\right)\left(x_{2}-x_{1}\right)(12) \\
& =-\left(x_{1}-x_{2}\right)^{2}(12)
\end{aligned}
$$

Standard flag order

- Since the terms we are summing over are maps, the elements in the smash product can be thought of as maps.
- If $X=\sum f_{w} w$, then for $g \in \operatorname{Frac}(\Lambda)$,

$$
X(g)=\sum_{w \in \hat{W}} f_{w} w(g)
$$

Definition 6 (from [Web19])

We define the standard flag order as all the $X \in \operatorname{Frac}(\Lambda) \# \hat{W}$ such that $X(\Lambda) \subset \Lambda$. We denote it by \mathcal{F}_{Λ}.

Example - how the maps work

- We'll look at something in the standard flag order in $\mathbb{C}\left(x_{1}, x_{2}\right) \# S_{2}$

Example 7

Consider the following element:

$$
\sigma_{1}:=\frac{1}{x_{2}-x_{1}}(12)-\frac{1}{x_{2}-x_{1}}
$$

We consider $\sigma_{1}\left(g\left(x_{1}, x_{2}\right)\right)$:

$$
\begin{aligned}
\sigma_{1}\left(g\left(x_{1}, x_{2}\right)\right. & =\frac{1}{x_{2}-x_{1}}(12)\left(g\left(x_{1}, x_{2}\right)\right)-\frac{g\left(x_{1}, x_{2}\right)}{x_{2}-x_{1}} \\
& =\frac{g\left(x_{2}, x_{1}\right)}{x_{2}-x_{1}}-\frac{g\left(x_{1}, x_{2}\right)}{x_{2}-x_{1}} \\
& =\frac{g\left(x_{2}, x_{1}\right)-g\left(x_{1}, x_{2}\right)}{x_{2}-x_{1}} \in \mathbb{C}\left[x_{1}, x_{2}\right]
\end{aligned}
$$

Examples - standard flag orders

Example 8

If $\Lambda=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $\hat{W}=S_{n}$, then the standard flag order is

$$
\mathcal{F}_{\Lambda}=\Lambda\left[\sigma_{1}, \ldots, \sigma_{n-1}\right] \text { where } \sigma_{i}=\frac{1}{x_{i+1}-x_{i}}(i, i+1)-\frac{1}{x_{i+1}-x_{i}}
$$

Example 9

If $\Lambda=\mathbb{C}[x]$ and $\hat{W}=\langle\tau\rangle$ where $\tau(f(x))=f(-x)$., then the standard flag order is

$$
\mathcal{F}_{\Lambda}=\Lambda\left[\frac{1}{x} \tau-\frac{1}{x}\right]
$$

Why?

- Linear algebra is a rigid and well-understood field, whereas abstract algebra is abstract.
- It can link several seemingly distinct objects together by having similar representations.
- Flag orders unify the representation theory of many important objects in algebra.
- Connections to mathematical physics and category theory.

What do I do?

- In algebra one of the first steps after defining an object is to describe maps between those objects.
- In my pre-print [Jau22] I have described sufficient conditions for maps between not only flag orders, but also Galois orders (see [FO10] and [Har20]).
- Additionally, I showed that flag (and Galois) orders are closed under tensor products thereby taking the first steps toward describing the category of flag (and Galois) orders.

References

[FO10] Vyacheslav Futorny and Serge Ovsienko. "Galois orders in skew monoid rings". In: Journal of Algebra 324.4 (2010), pp. 598-630. ISSN: 0021-8693. DOI: https://doi.org/10.1016/j.jalgebra.2010.05.006. URL: http://www.sciencedirect.com/science/article/pii/S0021869310002267.
[Har20] Jonas T. Hartwig. "Principal Galois orders and Gelfand-Zeitlin modules". In: Advances in Mathematics 359 (2020), p. 106806. ISSN: 0001-8708. DOI: https://doi.org/10.1016/j.aim.2019.106806. URL: http://www.sciencedirect.com/science/article/pii/S0001870819304232.
[Hum78] James E. Humphreys. Introduction to Lie algebras and representation theory. Vol. 9. Graduate Texts in Mathematics. Second printing, revised. Springer-Verlag, New York-Berlin, 1978, pp. xii+171. ISBN: 0-387-90053-5.
[Jam84] Gordon James. The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1984. DOI: 10.1017/CB09781107340732.
[Jau21] Erich C. Jauch. "An extension of $U\left(\mathfrak{g l}_{n}\right)$ related to the alternating group and Galois orders". In: Journal of Algebra 569 (2021), pp. 568-594. ISSN: 0021-8693. DOI: https://doi.org/10.1016/j.jalgebra.2020.10.017. URL: http://www.sciencedirect.com/science/article/pii/S0021869320305469.
[Jau22] Erich C. Jauch. Maps between standard and principal flag orders. 2022. DOI: 10.48550/ARXIV. 2208.13117. URL: https://arxiv.org/abs/2208.13117.
[Web19] Ben Webster. "Gelfand-Tsetlin modules in the Coulomb context". In: arXiv e-prints (Apr. 2019). arXiv: 1904.05415 [math.RT].

Thank you. Questions?

