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History and Moivation
History and Motivation

@ Studying “subalgebra-algebra” pairs finds its roots in representation
theory.
@ Focus on "semicommutative” pairs I C %:

e 7 is an associative (non-commutative) C-algebra,
e [ is an integral domain.

@ Motivation for such pairs comes from the framework of
Harish-Chandra modules (generalized weight modules) [DFO94]:

o % = U(g) for reductive g,
o I = U(h) for Cartan subalgebra h C g.

@ Our objects of interest were originally defined and studied by Futorny
and Ovsienko in [FO10] and [FO14].
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IHATNINEYAVEIEIS Some Definitions

Basic Definitions

Definition 1

For a Lie algebra g over C, the Universal enveloping algebra of g denoted
U(g), is the following quotient of the tensor algebra of g:

B T(9)
U(e) = x®@y—-—yox—I[x,y]|x,y €g)

Definition 2

A subalgebra ' C % is maximal commutative if it is not contained in any
other commutative subalgebra of % .
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S
Galois Rings and Galois Orders

e We will follow the setting of Hartwig's from [Harl7].

@ Let A be a Noetherian closed domain, G a subgroup of Aut(A), and
A a separating submonoid of Aut(A) with respect to G such that G
acts by conjugation on it.

o Let [:=A¢
Definition 3

Given a commutative ring R and a submonoid .#Z C Aut(R), we define
the smash product as follows:

R# .M = { Z aupt | a, € R and finitely many a,, # 0},
HEM

with component-wise addition, and multiplication defined by
ajpy - axpp = (a1p1(a2))pip2 and expanding linearly.

v
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IHATNINEYAVEIEIS Some Definitions

@ Since G acts on A, its action naturally extends to an action on
Frac(A).

@ As such, G acts on Frac(A)#. .

@ We have the following diagram:

N — Frac(N) —— Frac(A\)#.#

] ] J

[ — Frac(l') —— (Frac(A)#.#)¢
o Note: Frac(A)/ Frac(I') is a Galois extension with Galois group G.

Definition 4

For an element X € (Frac(A)#.# ) of the form X =" a,u, we define
supp_(X) = {1 | a, # 0}
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IHATNINEYAVEIEIS Some Definitions

Definition 5 (Futorny-Ovsienko 2010)

A Galois T-ring is a subalgebra % of (Frac(\)#.#)¢ containing I' such
that Frac(lN% = % Frac(T') = (Frac(N)#.#)°.

We have the following criterion for Galois rings:
Proposition 6 (Futorny-Ovsienko 2010)

Let 2 C (Frac(N)#.#)¢ and let % the the subring of (Frac(A\)#.4 )¢
generated by ' U Z". Then % is a Galois I'-ring iff Uxec 2 supp_,(X)
generates .4 as a monoid.
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IHATNINEYAVEIEIS Some Definitions

Definition 7 (Futorny-Ovsienko 2010)

A Galois T-order is a Galois -ring such that for any finite dimensional left
(or right) Frac(I')-subspace W of (Frac(A)#.#)¢, % N W is a finite
generated left (resp. right) I'-module.

@ The above condition is very technical and difficult to show.
@ In 2017, Hartwig showed the following condition implies the above
condition:
Definition 8 (Hartwig 2017)

Let % be a Galois -ring such that X(I') C T for every X € % . Then %
is a principal Galois -order

@ Note: I is maximal commutative in any Galois [-order.
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IHATNINEYAVEIEIS Some Definitions

@ Galois rings and Galois orders form a collection of algebras that
contains many important examples:
o Generalized Weyl algebras (Bavula, Rosenberg '9*),
o Universal enveloping algebra of gl,,,
o Shifted Yangians and Finite W-algebras.

@ They help us to study Gelfand-Tsetlin modules.

Definition 9
A % -module V is a Gelfand-Tsetlin module (with respect to I') if
dim(l".v) < oo for all v € V.

The major results in [FO14] give:
@ The existence of “generic” simple Gelfand-Tsetlin modules over
Galois rings.
@ A “rough” classification of simple Gelfand-Tsetlin modules over
Galois orders.
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SISO A Simple Example

A Simple Example

Let A = C[x], 6 € Aut(A) such that 6(x) =x — 1, # = (0)grp = Z,
and G the trivial group.

f(x) € C[x] such that f(0) # 0

Define X, Y € Frac(A)#.# such that

X = 5@ and Yy =51

X

Let % = C(A, X, Y)alg.
Then % is a Galois A-ring by the Galois ring criterion because
supp., X Usupp 4 Y = {6,671} which generate .# .
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Some Examples A Simple Example

Is ¢ a Galois A-order?
o Let C:= Cy,(N) ={u e % | fu= uf Yf € N}, the centralizer of A
in Y.
@ Since YX = f(XX) € C\ A, Ais not maximal commutative in %.
@ Since A is not maximal commutative, % is not a Galois A-order.
@ However, C is maximal commutative.

Question 2.1
Is % a Galois C-order? J
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SISO A Simple Example

Describing C

@ The following lemmas help us to describe C.

Lemma 10
1 1
For any f(x) such that f(0) #0, -, —— € C.
x x—1 )
Lemma 11
1
For any f(x) such that f(0) # 0 and k > 1, Tk e C.

Lemma 12

1
For any f(x) such that f(0) # 0 and k > 2, — e C.
X—
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SISO A Simple Example

Proposition 13 (Jx 2019)
If f(x) is a polynomial such that f(0) # 0, then

1
x +

C:(C[x][ k'kez].

Theorem 14 (Jx 2019)

If f(x) is a polynomial such that f(0) # O, then % is a (co-)principal
Galois C-order.
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SINCHETNIES  U(gl,) as a Galois order

Set-Up

o We recall that U(gl,)-modules can be represented by Gelfand-Tsetlin
patterns.

Example 15
Let (A21, A22) be a U(gl,) weight. Then the following is a Gelfand-Tsetlin

pattern L()\Ql, )\22)2

A11

where Ao1 > A1 > Aoo. )

@ U(gly) acts on these patterns via rational functions in the entries \;;
and integral shifts.
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SINCHETNIES  U(gl,) as a Galois order

@ In 2010, Futorny and Ovsienko gave a realization of U(gl,) as a
Galois order with A =Clxk; | 1 <i<k<n,G=5 x5 x---%x§
and A = <5j€ |1<¢<j<n-— 1>grp where 5je(Xk,-) = Xki — Ojkjp.

e We will use U, to denote the image of U(gl,) under the embedding
@: U(gl,) = (Frac(N)#.#)¢ defined as follows:

(E5) = S (59)1aE with o — Lo Mty — %
= NEah with as=F
PLEL P ki ki Hj;éi Xkj — Xki
k k—1
@(Ekk) = Z(in +i— 1) — Z(X(k_l),' +i— 1)
i=1 =1
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SINCHETNIES  U(gl,) as a Galois order

Example 16

For n =2, U, is contained in

(C(x11, X1, X22)FE (M) grp ) 12

where §'! is an automorphism of C(xi1, xo1, x22) defined by
511(X,'J') = Xjj — 51;51_,'.

with generators:

P(Ef) = =6 (01 — x11) (%22 — x11),
o(Er) = (6")7,
o(E11) = x1,

©(Ex) = x01 + x02 — x11 + 1.
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An Alternating Analogue of U(gl,) The Definition

@ What happens when we change the symmetric groups to alternating
groups?
o Recall that C[x1,x2, ..., X, = C[x1, %o, . . . ,x,,]s"[V].

Definition 17 (Jx 2019)

The alternating analogue of U(gl,), denoted 27 (gl,,), is defined as the
subalgebra of (Frac(A)#.4 ) *A2%xAn generated by
Uy U{Vo,V3,--- ,V,} where:

Vk = Vk(Xk].)' 50 ,ka) = Hi<j(xki —ij) for k = ]., cooglll = 1.
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An Alternating Analogue of U(gl,) Some Properties

@ The following proposition lists some basic properties of <7 (gl,,).

Proposition 18 (Jx 2019)

(i) U(gl,) = Up C (gly),
(ii) </ (gl,) is a Galois ring,
(iii) V, is central in </(gl,),
Z(/(g1,)) = Cha, -, ™,
there is a chain of subalgebras <7 (gl;) C </ (gl,) C --- C </ (gl,),
(vi) /(gl,) is the minimal extension of U(gl,) with properties (iv) and

(v). J

(iv

(v

)
)
)
)
)
)
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An Alternating Analogue of U(gl,) Some Properties

The case n =2

Proposition 19 (Jx 2019)

</ (gl,) is isomorphic to the following extension of U(gl,):

U(al)[T]
(T2 = (—C221 + 2¢cp0 + 1))

where cy; are the so-called Gelfand invariants for gl, with

1 = Eq1 + Ex and cop = E2 + E3 + Ex1E1p + EppEoy.
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An Alternating Analogue of U(gl,) Some Properties

Theorem 20 (Jx, 2019)

o/ (gly) is a Galois order.

Proof idea.

We use the previous proposition, V5 is central, and a theorem of Futorny
and Ovsienko from [FO10].
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An Alternating Analogue of U(gl,) Some Properties

Larger n

e Unfortunately the following example shows that .27 (gl,) is not a
Galois order for n > 3.

Example 21

Let [, ] denote the commutator bracket. Then

(P(E) + [p(E) VD) - (o(E7) = [e(E5), Val ) = 6% afy - (6%) ap,

an element centralizer of I in &7(gl,).
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An Alternating Analogue of U(gl,) Representations

For n =2

@ The structure of o/ (gl,)-modules is related to U(gl,)-modules in an
interesting way.

Proposition 22 (Jx 2019)

The finite-dimensional simple <7 (gl,)-modules are characterized by
ordered pairs (A2, €2), where Ay := (A21, \22) € C? is a dominant integral
weight for U(gl,) and e € {1, —1}.

Jauch, Erich C. (ISU) An Alternating Analogue of U(gl,) lowa Algebra Seminar Oct 2019 22/27



An Alternating Analogue of U(gl,) Representations

e We note that V2 must act diagonally on any finite-dimensional
7 (gly)-module V.

° Res'f((;[[;)) V. is a direct sum of simple U(gl,)-modules and V3 is a

quadratic polynomial of Gelfand invariants in U(gl,).

Example 23

Let V = V(0) @ V(0) where U(gl,) acts trivially. This means that V)3
must act as Idy/. We define the following action of V»

viy (1 « Vi
= (2)=( 5) ()
with 0 # « € C. It is clear then that V7 acts as the identity on V, but the

subrepesentation W = {(v1,0) | vi € V(0)} is not a direct summand of V
as a /(gl,)-module.

v
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An Alternating Analogue of U(gl,) Representations
Larger n

Theorem 24 (Jx 2019)

Every finite-dimensional simple module over </ (gl,), on which

Vo, ..., Va1 act diagonally, is of the form V(A\p,en,€n-1,...,€2) where
An = (An1, A2, .-, Ann) is @ weight of U(gl,), €j € {£1}™nd, with ry, j
denoting the number of ways to fill the j-th row of Gelfand-Tsetlin pattern
with fixed top row A\,, and j =2,3,...,n.

Proof idea.

Follows by induction on n, and the following commutative diagram:

o (gl,)-Mod" ¢ —— &7(gl,_;)-Mod"™d — -+ — &7(gl,)-Mod"<

! ! !

U(gl,) -Mod"4 —— U(gl, ;)-Modf — -+ — U(gl,) -Mod"¢

v
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Current & Future Work

o | proved a general result similar to the construction seen in the simple
example for turning Galois rings into Galois orders.

@ | have a result on the regarding (generic) Gelfand-Tsetlin modules for
< (gly).

o | proved that <7(gl,) satisfies the Gelfand-Kirillov Conjecture in
settings where the alternating group satisfies Noether's Problem.
@ | am working with my advisor Jonas Hartwig to give a realization of

U(sop) as a Galois order.

@ We are also working to describe the so-called “standard Flag order”
(defined in [Web19]) in the setting where G is a complex reflection

group.
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Thank you. Questions?
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