An Alternating Analogue of $U(\mathfrak{gl}_n)$ and Its Representations

Erich C. Jauch

Ph.D Candidate

Iowa State University

ecjauch@iastate.edu

University of Iowa Algebra Seminar

October 2019

Jauch, Erich C. (ISU)

Overview

- Preliminary Materials
 - History and Motivation
 - Some Definitions
- 2 Some Examples
 - A Simple Example
 - $U(\mathfrak{gl}_n)$ as a Galois order
- **(3)** An Alternating Analogue of $U(\mathfrak{gl}_n)$
 - The Definition
 - Some Properties
 - Representations

Current & Future Work

History and Motivation

- Studying "subalgebra-algebra" pairs finds its roots in representation theory.
- Focus on "semicommutative" pairs $\Gamma \subset \mathscr{U}$:
 - \mathscr{U} is an associative (non-commutative) \mathbb{C} -algebra,
 - Γ is an integral domain.
- Motivation for such pairs comes from the framework of Harish-Chandra modules (generalized weight modules) [DFO94]:
 - $\mathscr{U} = U(\mathfrak{g})$ for reductive \mathfrak{g} ,
 - $\Gamma = U(\mathfrak{h})$ for Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$.
- Our objects of interest were originally defined and studied by Futorny and Ovsienko in [FO10] and [FO14].

Basic Definitions

Definition 1

For a Lie algebra \mathfrak{g} over \mathbb{C} , the Universal enveloping algebra of \mathfrak{g} denoted $U(\mathfrak{g})$, is the following quotient of the tensor algebra of \mathfrak{g} :

$$U(\mathfrak{g}) = rac{T(\mathfrak{g})}{(x \otimes y - y \otimes x - [x, y] \mid x, y \in \mathfrak{g})}$$

Definition 2

A subalgebra $\Gamma \subseteq \mathscr{U}$ is *maximal commutative* if it is not contained in any other commutative subalgebra of \mathscr{U} .

Galois Rings and Galois Orders

- We will follow the setting of Hartwig's from [Har17].
- Let Λ be a Noetherian closed domain, G a subgroup of Aut(Λ), and *M* a separating submonoid of Aut(Λ) with respect to G such that G acts by conjugation on it.

• Let
$$\Gamma := \Lambda^G$$

Definition 3

Given a commutative ring R and a submonoid $\mathcal{M} \subseteq \operatorname{Aut}(R)$, we define the *smash product* as follows:

$$R \# \mathscr{M} := \{ \sum_{\mu \in \mathscr{M}} a_{\mu} \mu \mid a_{\mu} \in R \text{ and finitely many } a_{\mu} \neq 0 \},$$

with component-wise addition, and multiplication defined by $a_1\mu_1 \cdot a_2\mu_2 = (a_1\mu_1(a_2))\mu_1\mu_2$ and expanding linearly.

- Since G acts on Λ, its action naturally extends to an action on Frac(Λ).
- As such, G acts on $Frac(\Lambda) # \mathcal{M}$.
- We have the following diagram:

$$\begin{array}{c} \Lambda & \longrightarrow \operatorname{Frac}(\Lambda) & \longrightarrow \operatorname{Frac}(\Lambda) \# \mathscr{M} \\ \uparrow & \uparrow & \uparrow \\ \Gamma & & & & \\ \Gamma & \longrightarrow \operatorname{Frac}(\Gamma) & \longmapsto (\operatorname{Frac}(\Lambda) \# \mathscr{M})^G \end{array}$$

• Note: $Frac(\Lambda)/Frac(\Gamma)$ is a Galois extension with Galois group G.

Definition 4

For an element $X \in (\operatorname{Frac}(\Lambda) \# \mathscr{M})^G$ of the form $X = \sum a_{\mu}\mu$, we define $\operatorname{supp}_{\mathscr{M}}(X) = \{\mu \mid a_{\mu} \neq 0\}.$

Definition 5 (Futorny-Ovsienko 2010)

A Galois Γ -ring is a subalgebra \mathscr{U} of $(\operatorname{Frac}(\Lambda) \# \mathscr{M})^G$ containing Γ such that $\operatorname{Frac}(\Gamma) \mathscr{U} = \mathscr{U} \operatorname{Frac}(\Gamma) = (\operatorname{Frac}(\Lambda) \# \mathscr{M})^G$.

We have the following criterion for Galois rings:

Proposition 6 (Futorny-Ovsienko 2010)

Let $\mathscr{X} \subseteq (\operatorname{Frac}(\Lambda) \# \mathscr{M})^G$ and let \mathscr{U} the the subring of $(\operatorname{Frac}(\Lambda) \# \mathscr{M})^G$ generated by $\Gamma \cup \mathscr{X}$. Then \mathscr{U} is a Galois Γ -ring iff $\cup_{X \in \mathscr{X}} \operatorname{supp}_{\mathscr{M}}(X)$ generates \mathscr{M} as a monoid.

Definition 7 (Futorny-Ovsienko 2010)

A Galois Γ -order is a Galois Γ -ring such that for any finite dimensional left (or right) Frac(Γ)-subspace W of $(Frac(\Lambda) # \mathscr{M})^G$, $\mathscr{U} \cap W$ is a finite generated left (resp. right) Γ -module.

- The above condition is very technical and difficult to show.
- In 2017, Hartwig showed the following condition implies the above condition:

Definition 8 (Hartwig 2017)

Let \mathscr{U} be a Galois Γ -ring such that $X(\Gamma) \subseteq \Gamma$ for every $X \in \mathscr{U}$. Then \mathscr{U} is a principal Galois Γ -order

• Note: Γ is maximal commutative in any Galois Γ-order.

- *Galois rings* and *Galois orders* form a collection of algebras that contains many important examples:
 - Generalized Weyl algebras (Bavula, Rosenberg '9*),
 - Universal enveloping algebra of \mathfrak{gl}_n ,
 - Shifted Yangians and Finite W-algebras.
- They help us to study Gelfand-Tsetlin modules.

Definition 9

A \mathscr{U} -module V is a *Gelfand-Tsetlin* module (with respect to Γ) if dim $(\Gamma.v) < \infty$ for all $v \in V$.

The major results in [FO14] give:

- The existence of "generic" simple Gelfand-Tsetlin modules over Galois rings.
- A "rough" classification of simple Gelfand-Tsetlin modules over Galois orders.

A Simple Example

- Let $\Lambda = \mathbb{C}[x]$, $\delta \in Aut(\Lambda)$ such that $\delta(x) = x 1$, $\mathscr{M} = \langle \delta \rangle_{grp} \cong \mathbb{Z}$, and G the trivial group.
- $f(x) \in \mathbb{C}[x]$ such that $f(0) \neq 0$
- Define $X, Y \in Frac(\Lambda) # \mathscr{M}$ such that

$$X := \delta \frac{f(x)}{x}$$
 and $Y := \delta^{-1}$.

• Let
$$\mathscr{U}_f = \mathbb{C}\langle \Lambda, X, Y \rangle_{\mathrm{alg.}}$$

• Then \mathscr{U}_f is a Galois A-ring by the Galois ring criterion because $\operatorname{supp}_{\mathscr{M}} X \cup \operatorname{supp}_{\mathscr{M}} Y = \{\delta, \delta^{-1}\}$ which generate \mathscr{M} .

Is \mathscr{U}_f a Galois Λ -order?

- Let C := C_{U_f}(Λ) = {u ∈ U_f | fu = uf ∀f ∈ Λ}, the centralizer of Λ in U_f.
- Since $YX = \frac{f(x)}{x} \in C \setminus \Lambda$, Λ is not maximal commutative in \mathcal{U}_f .
- Since Λ is not maximal commutative, \mathscr{U}_f is not a Galois Λ -order.
- However, C is maximal commutative.

Question 2.1

Is \mathcal{U}_f a Galois C-order?

Describing C

• The following lemmas help us to describe C.

Lemma 10

For any
$$f(x)$$
 such that $f(0) \neq 0$, $\frac{1}{x}, \frac{1}{x-1} \in C$.

Lemma 11

For any
$$f(x)$$
 such that $f(0) \neq 0$ and $k \geq 1$, $\frac{1}{x+k} \in C$.

Lemma 12

For any
$$f(x)$$
 such that $f(0) \neq 0$ and $k \geq 2$, $\frac{1}{x-k} \in C$.

Proposition 13 (J* 2019)

If f(x) is a polynomial such that $f(0) \neq 0$, then

$$\mathcal{C} = \mathbb{C}[x] \bigg[rac{1}{x+k} \ \bigg| \ k \in \mathbb{Z} \bigg].$$

Theorem 14 (J* 2019)

If f(x) is a polynomial such that $f(0) \neq 0$, then \mathcal{U}_f is a (co-)principal Galois C-order.

Set-Up

• We recall that $U(\mathfrak{gl}_n)$ -modules can be represented by Gelfand-Tsetlin patterns.

Example 15

Let $(\lambda_{21}, \lambda_{22})$ be a $U(\mathfrak{gl}_2)$ weight. Then the following is a Gelfand-Tsetlin pattern $L(\lambda_{21}, \lambda_{22})$:

where $\lambda_{21} \geq \lambda_{11} \geq \lambda_{22}$.

 U(gl₂) acts on these patterns via rational functions in the entries λ_{ij} and integral shifts.

- In 2010, Futorny and Ovsienko gave a realization of U(gl_n) as a Galois order with Λ = C[x_{ki} | 1 ≤ i ≤ k ≤ n], G = S₁ × S₂ ×···× S_n, and *M* = ⟨δ^{jℓ} | 1 ≤ ℓ ≤ j ≤ n − 1⟩_{grp} where δ^{jℓ}(x_{ki}) = x_{ki} − δ_{jk}δ_{iℓ}.
- We will use U_n to denote the image of $U(\mathfrak{gl}_n)$ under the embedding $\varphi \colon U(\mathfrak{gl}_n) \hookrightarrow (\operatorname{Frac}(\Lambda) \# \mathscr{M})^G$ defined as follows:

$$\varphi(E_k^{\pm}) = \sum_{i=1}^k (\delta^{ki})^{\pm 1} a_{ki}^{\pm} \quad \text{with} \quad a_{ki}^{\pm} = \mp \frac{\prod_{j=i}^{k\pm 1} x_{k\pm 1,j} - x_{ki}}{\prod_{j\neq i} x_{kj} - x_{ki}},$$
$$\varphi(E_{kk}) = \sum_{i=1}^k (x_{ki} + i - 1) - \sum_{i=1}^{k-1} (x_{(k-1)i} + i - 1).$$

Example 16

For n = 2, U_2 is contained in

$$(\mathbb{C}(x_{11}, x_{21}, x_{22}) \# \langle \delta^{11} \rangle_{\mathrm{grp}})^{S_1 \times S_2}$$

where δ^{11} is an automorphism of $\mathbb{C}(x_{11}, x_{21}, x_{22})$ defined by

$$\delta^{11}(x_{ij}) = x_{ij} - \delta_{1i}\delta_{1j}.$$

with generators:

$$\begin{split} \varphi(E_1^+) &= -\delta^{11}(x_{21} - x_{11})(x_{22} - x_{11}), \\ \varphi(E_1^-) &= (\delta^{11})^{-1}, \\ \varphi(E_{11}) &= x_{11}, \\ \varphi(E_{22}) &= x_{21} + x_{22} - x_{11} + 1. \end{split}$$

- What happens when we change the symmetric groups to alternating groups?
- Recall that $\mathbb{C}[x_1, x_2, \dots, x_n]^{A_n} = \mathbb{C}[x_1, x_2, \dots, x_n]^{S_n}[\mathcal{V}].$

Definition 17 (J* 2019)

The alternating analogue of $U(\mathfrak{gl}_n)$, denoted $\mathscr{A}(\mathfrak{gl}_n)$, is defined as the subalgebra of $(\operatorname{Frac}(\Lambda) \# \mathscr{M})^{A_1 \times A_2 \times \cdots \times A_n}$ generated by $U_n \cup \{\mathcal{V}_2, \mathcal{V}_3, \cdots, \mathcal{V}_n\}$ where:

$$\mathcal{V}_k = \mathcal{V}_k(x_{k1}, \dots, x_{kk}) = \prod_{i < j} (x_{ki} - x_{kj}) \quad \text{ for } k = 1, \dots, n-1.$$

The following proposition lists some basic properties of \$\mathcal{A}(\mathcal{gl}_n)\$.

Proposition 18 (J* 2019)

- (i) $U(\mathfrak{gl}_n) \cong U_n \subset \mathscr{A}(\mathfrak{gl}_n)$,
- (ii) $\mathscr{A}(\mathfrak{gl}_n)$ is a Galois ring,
- (iii) \mathcal{V}_n is central in $\mathscr{A}(\mathfrak{gl}_n)$,
- (iv) $Z(\mathscr{A}(\mathfrak{gl}_n)) \cong \mathbb{C}[x_1,\ldots,x_n]^{A_n}$,
- (v) there is a chain of subalgebras $\mathscr{A}(\mathfrak{gl}_1) \subset \mathscr{A}(\mathfrak{gl}_2) \subset \cdots \subset \mathscr{A}(\mathfrak{gl}_n)$,
- (vi) A(gl_n) is the minimal extension of U(gl_n) with properties (iv) and (v).

The case n = 2

Proposition 19 (J* 2019)

 $\mathscr{A}(\mathfrak{gl}_2)$ is isomorphic to the following extension of $U(\mathfrak{gl}_2)$:

$$\frac{U(\mathfrak{gl}_2)[T]}{\left(T^2-(-c_{21}^2+2c_{22}+1)\right)}$$

where c_{2i} are the so-called Gelfand invariants for \mathfrak{gl}_2 with

$$c_{21} = E_{11} + E_{22}$$
 and $c_{22} = E_{11}^2 + E_{22}^2 + E_{21}E_{12} + E_{12}E_{21}$.

Theorem 20 (J*, 2019)

 $\mathscr{A}(\mathfrak{gl}_2)$ is a Galois order.

Proof idea.

We use the previous proposition, \mathcal{V}_2 is central, and a theorem of Futorny and Ovsienko from [FO10].

Larger n

• Unfortunately the following example shows that $\mathscr{A}(\mathfrak{gl}_n)$ is not a Galois order for $n \geq 3$.

Example 21

Let $\left[\cdot,\cdot\right]$ denote the commutator bracket. Then

$$\left(\varphi(E_2^+) + [\varphi(E_2^+), \mathcal{V}_2]\right) \cdot \left(\varphi(E_2^-) - [\varphi(E_2^-), \mathcal{V}_2]\right) = \delta^{21} a_{21}^+ \cdot (\delta^{21})^{-1} a_{21}^-,$$

an element centralizer of Γ in $\mathscr{A}(\mathfrak{gl}_n)$.

For n = 2

The structure of A(gl_n)-modules is related to U(gl_n)-modules in an interesting way.

Proposition 22 (J* 2019)

The finite-dimensional simple $\mathscr{A}(\mathfrak{gl}_2)$ -modules are characterized by ordered pairs $(\lambda_2, \varepsilon_2)$, where $\lambda_2 := (\lambda_{21}, \lambda_{22}) \in \mathbb{C}^2$ is a dominant integral weight for $U(\mathfrak{gl}_2)$ and $\varepsilon_2 \in \{1, -1\}$.

- We note that \mathcal{V}_2^2 must act diagonally on any finite-dimensional $\mathscr{A}(\mathfrak{gl}_2)$ -module V.
- Res^{A(gl₂)}_{U(gl₂)} V. is a direct sum of simple U(gl₂)-modules and V₂² is a quadratic polynomial of Gelfand invariants in U(gl₂).

Example 23

Let $V = V(0) \oplus V(0)$ where $U(\mathfrak{gl}_2)$ acts trivially. This means that \mathcal{V}_2^2 must act as Id_V . We define the following action of \mathcal{V}_2

$$\mathcal{V}_2. \begin{pmatrix} \mathbf{v}_1\\ \mathbf{v}_2 \end{pmatrix} = \begin{pmatrix} 1 & lpha\\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_1\\ \mathbf{v}_2 \end{pmatrix}$$

with $0 \neq \alpha \in \mathbb{C}$. It is clear then that \mathcal{V}_2^2 acts as the identity on V, but the subrepresentation $W = \{(v_1, 0) \mid v_1 \in V(0)\}$ is not a direct summand of V as a $\mathscr{A}(\mathfrak{gl}_2)$ -module.

Larger n

Theorem 24 (J* 2019)

Every finite-dimensional simple module over $\mathscr{A}(\mathfrak{gl}_n)$, on which $\mathcal{V}_2, \ldots, \mathcal{V}_{n-1}$ act diagonally, is of the form $V(\lambda_n, \varepsilon_n, \varepsilon_{n-1}, \ldots, \varepsilon_2)$ where $\lambda_n = (\lambda_{n1}, \lambda_{n2}, \ldots, \lambda_{nn})$ is a weight of $U(\mathfrak{gl}_n)$, $\varepsilon_j \in \{\pm 1\}^{r_{\lambda_n,j}}$, with $r_{\lambda_n,j}$ denoting the number of ways to fill the *j*-th row of Gelfand-Tsetlin pattern with fixed top row λ_n , and $j = 2, 3, \ldots, n$.

Proof idea.

Follows by induction on n, and the following commutative diagram:

Current & Future Work

- I proved a general result similar to the construction seen in the simple example for turning Galois rings into Galois orders.
- I have a result on the regarding (generic) Gelfand-Tsetlin modules for *A*(gl_n).
- I proved that \$\mathcal{A}(gl_n)\$ satisfies the Gelfand-Kirillov Conjecture in settings where the alternating group satisfies Noether's Problem.
- I am working with my advisor Jonas Hartwig to give a realization of U(son) as a Galois order.
- We are also working to describe the so-called "standard Flag order" (defined in [Web19]) in the setting where G is a complex reflection group.

References

- [DF094] Drozd Y.A., Futorny V.M., Ovsienko S.A. (1994) Harish-Chandra Subalgebras and Gelfand-Zetlin Modules. In: Dlab V., Scott L.L. (eds) Finite Dimensional Algebras and Related Topics. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol 424. Springer, Dordrecht, ISBN 978-94-017-1556-0, https://doi.org/10.1007/978-94-017-1556-0_5
- [FO10] Futorny, V., Ovsienko, S., Galois orders in skew monoid rings, In Journal of Algebra, Volume 324, Issue 4, 2010, Pages 598-630, ISSN 0021-8693, https://doi.org/10.1016/j.jalgebra.2010.05.006. (http://www.sciencedirect.com/science/article/pii/S0021869310002267)
- [FO14] Vyacheslav Futorny, Serge Ovsienko, Fibers of characters in Gelfand-Tsetlin categories, Trans. Amer. Math. Soc., Volume 366, Pages 4173-4208, ISSN 1088-6850, https://doi.org/10.1090/S0002-9947-2014-05938-2
- [Har17] Hartwig, J. T., Principal Galois Orders and Gelfand-Zeitlin modules, 2017, arXiv:1710.04186
- [Jau19] Jauch, E. C., An Alternating Analogue of $U(\mathfrak{gl}_n)$ and Its Representations, 2019, arXiv:1907.13254
- [Web19] Ben Webster.Gelfand-Tsetlin modules in the Coulomb context, 2019, arXiv:1904.05415

Thank you. Questions?