Maps between standard and principal flag orders

Erich C. Jauch

University of Wisconsin - Eau Claire

Joint Mathematics Meeting

January 7th, 2023

Preliminary Materials

- History and Motivation
- Galois Orders
- Flag Orders
- 2 Maps Between Standard Flag Orders
 - Sufficient Condition
 - Split Short Exact Sequences
 - Tensor Products

History and Motivation

- These types of objects are a generalization of the framework of Harish-Chandra modules where *U* is the universal enveloping algebra of a reductive Lie algebra and Γ is the universal enveloping algebra of a Cartan subalgebra (generalized weight modules) [DFO94].
- Galois orders were originally defined and studied by Futorny and Ovsienko in [FO10].
- They form a collection of algebras that contains many important examples:
 - *Generalized Weyl algebras* defined by independently by Bavula and Rosenberg in the early nineties.
 - Universal enveloping algebra of \mathfrak{gl}_n
 - Finite *W*-algebras
- This unifies the study of their Gelfand-Tsetlin modules [FO14].

Galois Orders

- Let Λ be a Noetherian integrally closed domain, G a finite subgroup of Aut Λ, and M a submonoid of Aut Λ, normalized by G, such that MM⁻¹ ∩ G = 1. The triple (Λ, G, M) is called a Galois order datum.
- Let $\Gamma := \Lambda^G$

Definition 1

Given a commutative ring R and a submonoid $\mathcal{M} \subseteq \operatorname{Aut} R$, we define the *smash product* as follows:

$$R \# \mathscr{M} := \{ \sum_{\mu \in \mathscr{M}} a_{\mu} \mu \mid a_{\mu} \in R \text{ and finitely many } a_{\mu} \neq 0 \},$$

with component-wise addition, and multiplication defined by $a_1\mu_1 \cdot a_2\mu_2 = (a_1\mu_1(a_2))\mu_1\mu_2$ and extending bilinearly.

- Since G acts on Λ, its action naturally extends to an action on Frac(Λ).
- As such, G acts on $Frac(\Lambda) # \mathcal{M}$:
- Galois Γ-orders are particular subalgebras of (Frac(Λ)#M)^G containing Γ.
- In [Har20], Hartwig showed the following

Theorem 2 (Hartwig)

Let \mathscr{U} be a Galois Γ -ring such that $X(\Gamma) \subseteq \Gamma$ for every $X \in \mathscr{U}$. Then \mathscr{U} is a Galois Γ -order.

- A Galois Γ-ring satisfying this condition is called a *principal Galois* Γ-order.
- Note: Γ is maximal commutative in any Galois Γ-order.

Flag Orders

- In [Web19], Webster introduced principal flag orders.
- The *flag order datum* is a triple (Λ, W, M) under the same restrictions as before (Replace G with W from the Galois order datum).
- Instead of looking at invariants, however, we look at $Frac(\Lambda) # (W \ltimes \mathcal{M}).$
- Sometimes $W \ltimes \mathscr{M}$ is denoted by \hat{W} for shorter notation.

Definition 4

A principal flag order with data $(\Lambda, W, \mathscr{M})$ is a subalgebra $F \subset \operatorname{Frac}(\Lambda) \# (W \ltimes \mathscr{M})$ such that:

(i) $\Lambda \# W \subset F$,

(ii)
$$\operatorname{Frac}(\Lambda)F = \operatorname{Frac}(\Lambda)\#(W \ltimes \mathcal{M}),$$

(iii) For every
$$X \in F$$
, $X(\Lambda) \subset \Lambda$.

Definition 5

The standard flag order with data $(\Lambda, W, \mathscr{M})$ is the subalgebra of all elements X in $\operatorname{Frac}(\Lambda) \# (W \ltimes \mathscr{M})$ satisfying (iii) and is denoted \mathcal{F}_{Λ} .

Example 6

If $\Lambda = \mathbb{C}[x_1, x_2, \dots, x_n]$ and \hat{W} is a finite complex reflection group acting on \mathbb{C}^n , then \mathcal{F}_{Λ} is the nilHecke algebra of \hat{W} (see [Web19]).

- What follows are my results from [Jau22]
- Let (Λ₁, W₁, M₁), (Λ₂, W₂, M₂) be two flag order data, and Frac(Λ_i) the field of fractions of Λ_i for i = 1, 2. Recall in particular that Ŵ_i = W_i κ M_i acts faithfully on Λ_i.
- Let $\varphi : \Lambda_1 \to \Lambda_2$ be a ring homomorphism and $\psi : \hat{W}_1 \to \hat{W}_2$ be a group homomorphism such that

$$\varphi(w(a)) = \psi(w)(\varphi(a)), \quad \forall a \in \Lambda_1, \forall w \in \hat{W}_1.$$
 (3.1)

Example 7

 $(\mathbb{C}[x_1, x_2, \ldots, x_n], A_n, 1)$ and $(\mathbb{C}[x_1, x_2, \ldots, x_n], S_n, 1)$ with φ as the identity map, and $\psi: A_n \to S_n$ the standard inclusion.

Theorem 8 (J*)

• There is an algebra homomorphism

$$\Phi: \operatorname{Frac}(\Lambda_1) \# \hat{W}_1 \to \operatorname{Frac}(\Lambda_2) \# \hat{W}_2$$
(3.2)

given by

$$\Phi(\mathit{fw}) = arphi(f)\psi(w), \qquad f \in \mathsf{Frac}(\Lambda_1), w \in \hat{W}_1$$
 (3.3)

• Suppose there is a subspace U of Λ_2 such that $\Lambda_2 \cong \varphi(\Lambda_1) \otimes U$ as $\psi(\hat{W}_1)$ -modules, where $\psi(\hat{W}_1)$ acts on $\varphi(a) \otimes u$ by

$$\psi(w)(\varphi(a)\otimes u) = \psi(w)(\varphi(a))\otimes u = \varphi(w(a))\otimes u$$

then Φ restricts to an algebra homomorphism

$$\Phi: \mathcal{F}_{\Lambda_1} \to \mathcal{F}_{\Lambda_2} \tag{3.4}$$

Theorem 9 (J*)

Let $(\Lambda_1, W_1, \mathcal{M}_1)$ and $(\Lambda_2, W_2, \mathcal{M}_2)$ be flag order data and $\mathcal{F}_{\Lambda_1}, \mathcal{F}_{\Lambda_2}$ be the corresponding standard flag orders such that the following are true:

- $\Lambda_2 = \Lambda_1 \oplus I$, where I is an ideal of Λ_2 ,
- there is an embedding $\hat{W}_1 \rightarrow \hat{W}_2$ that satisfies the Condition 3.1 with the natural embedding of $\Lambda_1 \rightarrow \Lambda_2$,
- for every $w \in \hat{W}_1$ and $a \in I$, w(a) = a.

Then $\mathcal{F}_{\Lambda_2} \cap (\operatorname{Frac}(\Lambda_1) \# \hat{W}_1) = \mathcal{F}_{\Lambda_1}$. In particular, $\mathcal{F}_{\Lambda_1} \hookrightarrow \mathcal{F}_{\Lambda_2}$.

Example 10

$$(\mathbb{C}[x_1,x_2,\ldots,x_n],S_n,1)$$
, $(\mathbb{C}[x_1,x_2,\ldots,x_n],A_n,1)$, and $I=\langle 0
angle$

Definition 11

Given an ideal $I \subset \Lambda$, we define:

$$\mathcal{F}_{\Lambda}[I] = \{ X \in \mathcal{F}_{\Lambda} \mid X(I) \subset I \}$$

the subring of \mathcal{F}_{Λ} that fixes I.

Definition 12

Given and ideal $I \subset \Lambda$, we define:

$$I\mathcal{F}_{\Lambda} = \{X \in \mathcal{F}_{\Lambda} \mid X(\Lambda) \subset I\}$$

the subring of \mathcal{F}_{Λ} send Λ to I. In fact, $I\mathcal{F}_{\Lambda}$ is an ideal of $\mathcal{F}_{\Lambda}[I]$.

Theorem 13 (J*)

Following the same assumptions as in Theorem 9, we have an embedding $\eta \colon \mathcal{F}_{\Lambda_1} \hookrightarrow \mathcal{F}_{\Lambda_2}[I]/I\mathcal{F}_{\Lambda_2}$

- This is quite similar to the situation of differential operators acting on a polynomial ring over an algebraically closed field and a quotient of that ring.
- In that situation the map is surjective as well, but η is not always surjective.

- Let (Λ₁, W₁, M₁), (Λ₂, W₂, M₂) be two flag order data, let each Λ_i be a k-algebra, and F_i = Frac(Λ_i)#Ŵ_i. Put ⊗ = ⊗_k.
- Let $\Lambda = \Lambda_1 \otimes \Lambda_2$. Then $(\Lambda, W_1 \times W_2, \mathcal{M}_1 \times \mathcal{M}_2)$ is a flag order datum with standard flag order \mathcal{F}_{Λ} .
- Let $(\mathcal{F}_1 \otimes \mathcal{F}_2)_{\Lambda} = \{ X \in \mathcal{F}_1 \otimes \mathcal{F}_2 \mid X(\Lambda) \subset \Lambda \}.$

Theorem 14 (J*)

There is a chain of embeddings

$$\mathcal{F}_{\Lambda_1}\otimes \mathcal{F}_{\Lambda_2} \hookrightarrow \mathcal{F}_{\Lambda} \hookrightarrow (\mathcal{F}_1\otimes \mathcal{F}_2)_{\Lambda}.$$

Corollary 15 (J*)

The tensor product of two principal flag orders is a principal flag order.

References

- [DF094] Yurii A. Drozd, Vyacheslav M. Futorny, and Sergei A. Ovsienko. "Harish-Chandra Subalgebras and Gelfand-Zetlin Modules". In: *Finite Dimensional Algebras and Related Topics* 424 (1994). DOI: https://doi.org/10.1007/978-94-017-1556-0_5.
- [FO10] Vyacheslav Futorny and Serge Ovsienko. "Galois orders in skew monoid rings". In: Journal of Algebra 324.4 (2010), pp. 598-630. ISSN: 0021-8693. DOI: https://doi.org/10.1016/j.jalgebra.2010.05.006. URL: http://www.sciencedirect.com/science/article/pii/S0021869310002267.
- [FO14] Vyacheslav Futorny and Serge Ovsienko. "Fibers of characters in Gelfand-Tsetlin categories". In: Transactions of the American Mathematical Society 366 (Aug. 2014). DOI: 10.1090/S0002-9947-2014-05938-2.
- [Har20] Jonas T. Hartwig. "Principal Galois orders and Gelfand-Zeitlin modules". In: Advances in Mathematics 359 (2020), p. 106806. ISSN: 0001-8708. DOI: https://doi.org/10.1016/j.aim.2019.106806. URL: http://www.sciencedirect.com/science/article/pii/S0001870819304232.
- [Jau22] Erich C. Jauch. Maps between standard and principal flag orders. 2022. DOI: 10.48550/ARXIV.2208.13117. URL: https://arxiv.org/abs/2208.13117.
- [Web19] Ben Webster. Gelfand-Tsetlin modules in the Coulomb context. 2019. DOI: 10.48550/ARXIV.1904.05415. URL: https://arxiv.org/abs/1904.05415.

Thank you. Questions?

